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Abstract: Visualizing and characterizing microvascular abnormalities with optical coherence
tomography angiography (OCTA) has deepened our understanding of ocular diseases, such as
glaucoma, diabetic retinopathy, and age-related macular degeneration. Two types of microvascular
defects can be detected by OCTA: focal decrease because of localized absence and collapse of
retinal capillaries, which is referred to as the non-perfusion area in OCTA, and diffuse perfusion
decrease usually detected by comparing with healthy case-control groups. Wider OCTA allows
for insights into peripheral retinal vascularity, but the heterogeneous perfusion distribution from
the macula, parapapillary area to periphery hurdles the quantitative assessment. A normative
database for OCTA could estimate how much individual’s data deviate from the normal range,
and where the deviations locate. Here, we acquired OCTA images using a swept-source OCT
system and a 12×12 mm protocol in healthy subjects. We automatically segmented the large
blood vessels with U-Net, corrected for anatomical factors such as the relative position of fovea
and disc, and segmented the capillaries by a moving window scheme. A total of 195 eyes were
included and divided into 4 age groups: < 30 (n=24) years old, 30-49 (n=28) years old, 50-69
(n=109) years old and >69 (n=34) years old. This provides an age-dependent normative database
for characterizing retinal perfusion abnormalities in 12×12 mm OCTA images. The usefulness
of the normative database was tested on two pathological groups: one with diabetic retinopathy;
the other with glaucoma.
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1. Introduction

Optical coherence tomography angiography (OCTA) is a three-dimensional, non-invasive, and
dye-free vascular imaging modality that outperforms injection-based retina vascular imaging
modalities, such as fluorescein angiography and indocyanine green angiography in many aspects.
OCTA can visualize, characterize and quantify the vascular abnormalities in macular and
parapapillary regions in a broad spectrum of ocular diseases including glaucoma, diabetic
retinopathy (DR), and age-related macular degeneration [1–4].

The recent development of OCTA with wide-angle optics design, fast acquisitions, better
registration algorithms, and eye tracker incorporations, has provided insights into the pathological
vascular alteration in the posterior pole [5–9]. For instance, it showed higher diagnostic power in
stratifying non-proliferative DR (NPDR) compared with the narrower macular scan for the reason
that initial retinal capillaries dropout could happen in the retinal periphery [6]. Focal retinal
perfusion defects reflected by localized absence or collapse of the capillaries could be easily
identified as areas of non-perfusion in OCTA, and diffused retinal perfusion decrease was usually
detected by comparing with age-matched case-control groups. Therefore, normative databases
played an important role in differentiating and grading the vascular abnormalities, especially for
the diffused capillary defects. A few studies have reported the normative OCTA database in the
macula or parapapillary regions [10–12]; however, developing a normative database in 12×12
mm is more challenging because of several obstacles, including perfusion density heterogeneity
among macular, parapapillary to peripheral regions, and uneven illumination resulted from
optical vignetting.

Here for the first time, we developed a normative database for retinal perfusion density using
12×12 mm OCTA. Images were acquired on a swept-source OCT (SS-OCT) prototype (PlexElite
9000, Zeiss Meditec, Dublin, CA, USA). Large vessels were automatically isolated using a
validated U-Net, and the entire database was divided into 4 age groups: < 30 years old, 30-49
years old, 50-69 years old and >69 years old. We also demonstrated the usefulness of the
normative database in quantifying the retinal perfusion change in eyes with primary open-angle
glaucoma (POAG) and NPDR.

2. Methods

2.1. OCTA protocol

This is a prospective study. Normal subjects were recruited from three cohorts (PIONEER: The
PopulatION HEath and Eye Disease PRofile in Elderly Singaporeans; SIENA: the Singapore
Imaging Eye Network; and REMODEL: Response of the Myopcardium to Hpertrophic Conditions
in the Adult Population) from Singapore National Eye Center (SNEC) outpatient clinics during
the period of January 2018 to January 2020. Inclusion criteria for the healthy subjects were no
evidence of hypertension or ocular pathologies, including glaucoma, DR, and age-related macular
degeneration. Another two groups of participants (n= 20) were included to evaluate the normative
database: POAG participants were recruited from the SIENA protocol, and NPDR participants
were recruited from Diabetes study in Nephropathy And other Microvascular complications
protocol. These studies were approved by the SingHealth Centralized Institutional Review Board
and conducted in accordance with the Declaration of Helsinki. Written informed consent was
obtained from every participant.

OCTA images were taken using a prototype SS-OCT system operated in 1050 nm region and
100 nm bandwidth. The system operated at a speed of 100,000 A-scans/second, and the axial and
lateral resolutions in tissue were 6.3µm and 20µm, respectively.

A 12×12 mm scanning protocol centered at the fovea was applied, and each volume consisted
of 500 A-scans and 500 B-scans. Each B-scan was repeated twice for generating OCTA images
using an optical microangiography algorithm [13]. Motion related artifacts were minimized



Research Article Vol. 12, No. 7 / 1 July 2021 / Biomedical Optics Express 4034

by an integrated line scanning ophthalmoscope (LSO) eye tracker during data acquisition. A
review software (Zeiss Meditec, Dublin, CA, USA) provided the automated segmentation of
retinal layers and retinal pigment epithelium (RPE). The segmentation was carefully checked,
and manual corrections were applied when necessary. Superficial capillary plexus (SCP, inner
limiting membrane – inner plexiform layer) and deep capillary plexus (DCP, outer plexiform
layer) with automatic projection removal were extracted for further analysis. The exported images
were interpolated to 1024 ×1024 pixels. The signal strength index (SSI) as an indication of the
image quality was also extracted.

2.2. The validation of automated large vessel isolation via deep learning

Large retinal vessels were automatically segmented with U-Net [14]: a fully-convolutional
deep learning architecture widely applied in segmenting biomedical images. The U-Net was
characterized by a downsampling path and an upsampling path. In the downsampling path, stacks
of convolutional, max pooling layers and activation units captured the context from the image;
in the upsampling path, transposed convolutions upsampled the features. Skip connections
concatenated the feature maps at the same scale to provide location information. In the end, a
single channel convolution, together with batch normalization and sigmoid activation function,
calculated a probability map, which was converted into a binarized map with a predefined
threshold (0.5). The diagram of the U-Net and the detailed parameters are shown in Fig. 1.

Fig. 1. U-Net architecture for large vessel segmentation in OCTA images.

Large vessels were manually delineated by two graders, where the overlap was regarded as
the ground truth. The annotation of large vessels is based on whether the tubular structure of
the vessel can be recognized. We trained the U-Net over 80 12×12 mm OCTA images from a
separate database using a custom made IoU (Intersection over Union) loss function as shown in
Eqn. (1), where ypred was the predicted binarized matrix, ytrue was the ground-truth, and i,j were
the coordinate indicators.

LIoU = 1 −

∑︁
i,j∈N ypred

i,j ytrue
i,j∑︁

i,j∈N ypred
i,j + ytrue

i.j − ypred
i,j ytrue

i,j

(1)

A five-fold cross-validation method was used to evaluate the architecture, the best of which
was applied to segment the large vessels [15]. An original 12×12 mm OCTA image and its
corresponding U-Net segmented large vessel masks are shown in Fig. 2(A-B), and overlaid vessel
mask and OCTA image illustrated the accuracy of large vessel segmentation (Fig. 2(C)).

We further evaluated the model with several scores:
IoU score: The area of intersection between predicted and ground-truth maps divided by area

of union.
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Fig. 2. Process flow diagram for generation of capillary perfusion density maps. A) A
representative 12×12 mm OCTA image (Male, Age: 60, SSI: 8) on superficial capillary
plexus. B) OCTA image after illuminance compensation with Gaussian filter. C) Large
vessels segmented by U-Net. D) Capillary segmentation in a window with size 3×3 mm. E)
Color coded retinal vessel map with green and red representing large vessels and capillaries,
respectively. F) Binarized 12×12 mm retinal vessel map using a sliding window segmentation
scheme. Capillary perfusion density maps before (G) and after signal strength index (SSI)
adjustment. Shown in jet colormap. Large vessels were masked out in black.

Dice score: 2X area of intersection between predicted and ground-truth maps divided by the
sum of areas of these two maps.

Accuracy score: percentage of the correctly predicted areas.

2.3. Perfusion density heatmap

A custom MATLAB (MathWorks Inc, MA, USA) algorithm was developed to generate a map
representing microvascular perfusion density in SCP, DCP, and total retinal vasculature of healthy
adults. It comprised the following steps. Firstly, to compensate for decreased illuminance at
the peripheral regions of the 12×12 mm OCTA, we divided the OCTA image by a rotationally
symmetric Gaussian lowpass filter (sigma= 9 mm). A sliding window scheme (window size:
3 × 3 mm; sliding step: 0.375 mm in both directions) was used to segment the capillaries and
compensate for the residual uneven illuminance. In each window, the threshold was empirically
set as 40% of the mean intensity of large vessels, and the threshold was applied to all superficial,
deep, and full retinal angiograms. All the vessels in DCP were considered as capillaries.
Binarized images were therefore generated, where the regions with large vessels and capillaries
were set to 1, while the background was set to 0 (Fig. 2(D)). A binarized perfusion map with large
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vessel selectivity is shown in Fig. 2(E). Red and green colors represented capillaries and large
vessels, respectively. Secondly, to calculate the capillary perfusion density, the values of large
vessel regions were set to Not a Number (NaN). Lastly, the perfusion map was calculated as the
convolution between a normalized kernel (a disk-shaped structuring element, radius= 0.164 mm)
and the binarized capillary images, omitting NaN values. The perfusion map was converted to a
jet color scale heatmap as shown in Fig. 2(F). The correlation between perfusion density and SSI
were fit in a linear function, and perfusion density from individual map was adjusted based on its
SSI and the average SSI over the entire database, as shown in Fig. 2(H).

To register individual maps, centers of the fovea and optic nerve head (ONH) were automatically
identified. Fovea center was referred to as the geometrical center of the fovea avascular zone, and
ONH was segmented by simply searching for the non-perfused regions in nasal parts of the image.
The distance and the tilt between the fovea and ONH centers were calculated on individual maps.
Consequently, the mean locations of the fovea and ONH centers were computed and served as the
reference as shown in Fig. 3. Individual maps were registered to the reference via nonreflective
similarity transformation, where both ocular magnification and tilt were partially compensated.
Average and standard deviation (SD) maps were calculated to show the distribution of capillary
perfusion density across a wide field. The capillary defect map calculated the difference between
the age-match averaged capillary perfusion map and the registered capillary perfusion map of
individuals, normalized by the SD.

Fig. 3. Illustration of geometric non-rigid registration to compensate for magnification and
tilt. ONH: optic nerve head.

We also extracted the perfusion density in three regions of interest: a 6×6 mm region centered
at the fovea, the remaining square annulus, and the entire field of view (12×12 mm). Perfusion
density was calculated as the ratio between the area with microvasculature per total area excluding
large vessels.

3. Results and discussion

3.1. U-Net on the accuracy of automated large vessel segmentation

Despite different IoU scores, major arteries and veins were accurately segmented by U-Net
(Fig. 4), whereas the disagreement between predicted and ground-truth maps was mainly on
arterioles and venules. High accuracy score (97.67%) indicated that major vessels were fully



Research Article Vol. 12, No. 7 / 1 July 2021 / Biomedical Optics Express 4037

picked up by the U-Net, while the slight under-segmentation of the arterioles and venules were
likely due to their insufficient differentiation from capillaries in OCTA images and inconsistent
ground truth annotations (Intergrader IoU: 87.42%, Dice: 93.26%).

Fig. 4. Representative large vessel segmentation results with high, moderate, and low IoU
scores. Different scores (IoU, Dice, Accuracy) were calculated to evaluate the performance
of the U-Net, as well as the repeatability between graders. IoU: Intersection over Union.

For the most adopted Frangi [16] and Gabor filters [17], enhancing the vessels with one scale
could interfere with vessels in other scales [18]. For the recent Bayesian residual transform,
information on the image is decomposed into independent scales, but prior knowledge of the
scale range is essential [19]. In contrast, U-Net could simultaneously and accurately segment
the large vessels with a broad scale range and performed better on complex vascular structures
including vessel branching, crossing, and even ONH. The performance of segmentation with
Frangi (sigma: 2-6 pixels), Gabor (theta: 16 orientations from 0-pi; frequency: 0.1-0.2 pixel;
sigma: 2-6 pixels) or both filters is shown in Fig. 5 and summarized in Table 1. Parameters
were optimized by maximizing IoU. Visually U-Net performed the best, where Gabor filter
over-segmented the highly reflective parapapillary regions, and the Frangi or Gabor + Frangi
filter yielded some disconnection at vessel branches and crosses. U-Net achieved the highest
IoU, Dice score and accuracy score. The accuracy of the large vessel segmentation is not only
important to the following capillary segmentation and quantification, but also valuable for future
studies on vessel calibers in patients with systemic diseases [20].

Fig. 5. Comparison between U-Net and traditional vessel enhancement algorithms.
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Table 1. Large vessel segmentation performance

Inter-grader Frangi Gabor Gabor + Frangi U-Net

IoU 87.42% 69.79% 57.95% 75.02% 78.65%
Dice 93.26% 82.20% 73.31% 85.71% 87.50%

Accuracy 89.05% 73.01% 85.06% 97.67%

3.2. Age-dependent average and SD perfusion maps

A total of 195 eyes from 138 (Male= 92; Age: 58.8±15.1 years old, range 23-89 years old, SSI:
8.70±0.88) Asian subjects were included, with 24 eyes in group 1 (<30 years old, age: 25±2.4
years old, SSI: 9.04±0.69), 28 eyes in group 2 (30-49 years old, age: 44.2±3.9 years old, SSI:
8.75±0.93), 109 eyes in group 3 (50-69 years old, age: 60.8±5.8 years old, SSI: 8.60±0.88), and
34 in group 4 (>69 years old, age: 75.8±5.0 years old, 8.76±0.96). All the scans were strictly
checked to ensure high quality (SSI>7), and SSI was not significantly different between groups
(p= 0.15, analysis of variance). The correlation between perfusion density in each plexus and
SSI are shown in Supplementary Figure 1, and as mentioned in the method section, the all the
perfusion density reported here are after SSI adjustment.

The average and SD capillary perfusion maps, that were adjusted for SSI, from three layers
(SCP, DCP, and full retina) are shown in Fig. 6. Visually, the spatial distribution of mean perfusion
density in SCP was similar to the one of the retinal nerve fiber layer (RNFL) thickness, indicating
a strong association between vascular and axonal support to the retinal ganglion cells [21,22].
The capillaries in DCP were evenly distributed over the entire region, where parapapillary regions
(Fig. 6, black arrows) have relatively higher perfusion density. This is in keeping with others’
reports [23–25] and might due to the insufficient performance of the segmentation and projection
removal algorithms. For the SD maps, optic disc size variation among individuals caused
ring-shaped structures around the ONH (Fig. 6, white arrows) [26]. Low SD in the parapapillary
regions (Fig. 6, orange arrows) is correlated with the high capillary perfusion, while high SD were
mostly in the peripheral regions (Fig. 6, red arrows), especially interior-nasal and superior-nasal
regions. Several potential hypotheses could explain this high peripheral perfusion variation,
including individual capillary perfusion difference between individuals, optical vignetting due to
eye aberration, and the variation of FOV that was partially compensated. Both average and SD
maps need to be considered to determine the deviation from the normal range.

The overall spatial distribution patterns were similar among the three age groups. Notably,
capillary density progressively decreased in the regions superior and inferior to the macula in
both SCP and full retina, and the perfusion density in the peripheral regions was significantly
lower in the age group >69 years old. Moreover, the SD in SCP and full retina increased over the
ages, reflected by shrinkage of the low SD area (blue color regions) and expansion of the high
SD area (red color regions). Interestingly, the SD in DCP was highest in the age group between
50-69 years. This might be explained by a relatively fast decline rate of the perfusion in DCP in
this age group, while the rate differed among individuals [27,28].

To investigate the age-dependent retinal perfusion in more detail, we simulated the retinal
nerve fiber trajectories based on a mathematical model proposed by Jansonius et al. [29,30] and
studied the age-dependent perfusion density change along these trajectories. Figure 6(A) showed
a SCP perfusion map in linear grayscale, where the black curves represented the trajectories from
the ONH, separated by 10 degrees. Finer trajectories were plotted with 1-degree separation and
the distance to the ONH along the trajectory was calculated and represented in parula color scale.
The perfusion density along the fine trajectories was plotted in Fig. 7(B-D). Solid curves and
the semi-transparent bands represented the mean and the SD of perfusion along the trajectories,
respectively. The perfusion density ranged between 30-57% in SCP, 22-34% in DCP, and 36-62%
in full retina. It decreased monotonically from parapapillary towards the periphery in SCP and
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Fig. 6. Average and standard deviation (SD) perfusion maps from three ages groups.

total retina but fluctuated in DCP. The absolute perfusion density values are highly dependent on
system parameters including laser wavelength, lateral resolution, sampling resolution, and B-scan
rate, as well as post-processing parameters including threshold method [31–34]. Nevertheless,
the age-dependent perfusion density decrease in SCP and full retina was predominant in younger
ages, but in DCP was in older ages In older ages (>50 years old), the age-dependent decrease
in perfusion was more predominant in DCP than in SCP, which is in agreement with previous
studies [28,35]. Although no clear evidence showed the nourishing relationship between DCP
and specific neurons, we hypothesize that DCP provides oxygen and nutrients to horizontal and
bipolar cells. Different neurons could undergo heterogeneous aging journeys [36], but deep
neurons may be more susceptible to aging than the superficial neurons (retinal ganglion cells
and amacrine cells), occurring first in the parapapillary area and then later in the peripheral area.
Further studies are, however, required to experimentally verify this hypothesis.

3.3. Clinical application of the normative database in various eye diseases

The normative database could provide an intuitive observation of microvascular changes in a
variety of eye diseases. A direct defect map could inform the ophthalmologists with the loci and
severities of microvascular alterations, in a wide field of view. Next, we applied the normative
datasets on two types of common eye diseases, namely, POAG and NPDR.

Two representative eyes from the same male patient (age: 37 years old) illustrated the
identification and characterization of the glaucomatous damage in microvasculature using the
normative database. The visual field tests showed early arcuate [37] loss along with the nerve
fiber bundles in both superior and inferior hemifields (Fig. 8(A)) in the right eye, and in superior
hemifields (Fig. 8(E)) in the left eye. The right eye was categorized as mild glaucoma (pattern
deviation: −2.85 dB) and left eye was categorized as pre-perimetric glaucoma (pattern deviation:
−1.69 dB) [38]. Low perfusion arcuate bands along the nerve fiber trajectories could be visualized
from the grayscale OCTA image as well as its capillary perfusion map (SSI: 10 in both eyes,
Fig. 8(B-C), 7(F-G)). Importantly, the capillary defect map (Fig. 8(D) and 8(H)) clearly showed
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Fig. 7. Perfusion density distribution along the retinal nerve fiber trajectories. A) Overlaid
retinal perfusion density map (grayscale) and simulated trajectories based on a mathematical
model [26,27]. Finer retinal nerve fiber trajectories were plotted within 1-degree separation
and the distance to the ONH along the nerve fiber trajectories was calculated and represented
in parula color scale. B-D) Perfusion density distribution of superficial capillary plexus
(SCP), deep capillary plexus (DCP), and full retina along retinal nerve fiber trajectories in
four age groups. Solid curves and the semi-transparent bands represented the mean and the
SD of perfusion along the trajectories.

the defect boundaries and the severities. The high values around the ONH were the artifacts
because of the ONH size difference.

Structural information from OCT demonstrated high sensitivity and specificity in diagnosing
glaucoma in the early stage [39,40], and the RNFL thickness decrease was along the nerve fiber
bundle trajectories. Traditional 6×6 mm macular or ONH scans can only visualize part of the
injured area, and provide an incomprehensive characterization of the glaucomatous damage. Our
data confirmed the value of OCT scans in glaucoma diagnosis, and microvascular changes could
provide information of early nutrients supply insufficiency to the neurons. Whether microvascular
based diagnosis overperforms RNFL thickness based diagnosis remains unknown. The hypothesis
that combining wide-field microvascular and morphological information increases the diagnostic
power of early-stage glaucoma detection needs further investigation with larger clinical datasets.

Two representative eyes from two male patients (age: 64 & 72 years old) illustrated the
usefulness of the normative database in moderate NPDR. Standard 35-degree fundus views
showed clear evidence of hemorrhages (Fig. 8(I), white arrow) and soft exudate (Fig. 8(P), yellow
arrow). In the OCTA images (SSI: 8 in both eyes, SCP: Fig. 8(J) and 8(Q); DCP: Fig. 8(M) and
8(T)), two types of microvascular changes could be observed: focal capillary dropout adjacent to
large retinal vessels; diffuse capillary change associated with a lower OCTA signal. Blood flow
rate is strongly correlated with the OCTA signal, although non-linearly [41], so a reduced OCTA
signal might indicate a dysfunction of the capillary wall or pericytes, which occurs before the
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Fig. 8. Demonstration of using normative capillary perfusion maps in quantifying capillary
defects in POAG eyes and NPDR eyes. A,E) Visual fields in POAG. B,F) 12×12 mm OCTA
images in POAG eyes (Male, Age: 38, SSI: 10). I,P) Standard 35-degree fundus views. J,M)
12×12 mm OCTA images in moderate NDPR eye (Male, Age: 64, SSI: 8). Q,T) 12×12
mm OCTA images in moderate NDPR eye (Male, Age: 70, SSI: 8). The original grayscale
OCTA images (second column) were processed by the methods to create capillary perfusion
maps (third column). Their comparisons with age-matched normative capillary maps (fourth
column) showed both the loci and severities of the capillary defects.
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collapse or absence of the capillaries [42]. The capillary perfusion heatmaps (SCP: Fig. 8(K)
and 8(R), DCP: Fig. 8(N) and 8(U)) provided direct views of the distribution of the capillaries.
Alterations to the large vessels were less obvious at this stage and isolating them could augment
our detection sensitivity on the microvascular changes [6]. Comparing with the age-matched
normative database could simultaneously identify the loci and severities of the capillary dropout,
especially in DCP. In the first case, some focal capillary defects and diffuse capillary change were
detected in the peripheral and macular regions, respectively. In the macular region, DCP was less
affected than SVP, while perfusion in both slabs were reduced in the retinal periphery (Fig. 8(L)
and 8(O)). In the second case, despite focal capillary defects, the overall retinal perfusion was
significantly lower than the normal distribution, on both SCP and DCP (Fig. 8(S) and 8(V)).
Again, further investigation using larger clinical datasets will be needed for the clinical validation
of our approach. These capillary defect maps have the potential to accurately quantify capillary
drop out on consecutive visits to provide an additional measure for monitoring of peripheral
vascular perfusion in eyes not only with early diabetic disease but also the therapeutic response
of eyes undergoing treatment for proliferative diabetic retinopathy or diabetic macular edema.

Lastly, a total of 10 POAG eyes and 10 NPDR eyes were included to show their deviations
for the normal distributions. The perfusion density in the entire 12×12 mm FOV, as well as the
central 6×6 mm and the remaining square annulus, were evaluated, summarized in Table 2. As
expected, significant differences in capillary perfusion were detected between the diseased eyes
and the normal subjects, while the DCP were less affected. The sensitivity and specificity of
using the normative database to classify POAG or NPDR needs to be done in larger datasets.

Table 2. Retinal perfusion density in healthy and diseased eyes

Entire Field of View
(12×12 mm)

Central Field of
View (6×6 mm) Square Annulus

SCP DCP Total
Retinal

SCP DCP Total
Retinal

SCP DCP Total
Retinal

Normal subjects

Group 1 (<30 yrs
old) (n=24,

OS/OD= 13/11)

56.51
±4.95

29.02
±7.63

60.68
±4.72

66.01
±3.55

25.89
±10.09

67.22
±3.57

53.22
±5.80

30.09
±7.10

58.42
±5.66

Group 2 (30-49 yrs
old) (n=28,

OS/OD= 14/14)

51.60
±6.01

26.36
±6.82

54.94
±6.87

60.88
±6.49

25.73
±7.89

61.75
±7.82

48.41
±6.70

26.58
±7.15

52.60
±7.57

Group 3 (50-69 yrs
old) (n=109,

OS/OD= 55/54)

51.47
±7.28

25.89
±9.84

54.19
±7.95

60.08
±8.20

24.28
±10.34

60.27
±8.78

48.52
±7.53

26.44
±9.89

52.10
±8.32

Group 5 (>70 yrs
old) (n=34,

OS/OD= 19/15)

48.33
±10.26

22.01
±11.09

51.91
±13.77

57.07
±10.76

20.66
±10.31

57.85
±13.21

45.33
±10.39

22.48
±11.65

49.87
±14.30

Combined
vn(n= 195,

OS/OD= 101/94)

51.56
±7.76

25.66
±9.59

54.70
±9.09

60.40
±8.39

24.05
±10.06

60.92
±9.46

48.52
±8.04

26.22
±9.75

52.56
±9.53

POAG (n=10) 45.51
±6.42

22.36
±6.06

47.32
±7.22

53.95
±7.14

22.48
±9.39

53.49
±7.87

42.61
±6.74

22.34
±5.51

45.22
±7.82

p-value 0.047 0.3420 0.082 0.072 0.211 0.052 0.061 0.074 0.043

NPDR (n=10) 40.43
±6.60

21.83
±7.22

41.95
±7.21

45.92
±8.21

22.99
±5.71

48.03
±7.72

38.58
±7.16

21.44
±7.86

39.88
±7.75

p-value 0.006 0.245 <0.001 0.002 0.841 <0.001 0.017 0.172 <0.001

One limitation of this study is to use a commercially available prototype (PlexElite 9000) while
OCTA images can be affected by multiple factors, including sampling frequency, optical resolution,
and processing algorithms. Without knowing the parameters and algorithms, comparing OCTA
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metrics from different machines needs caution. Furthermore, OCTA images, especially wider
OCTA images were subjects to artifacts, such as motion artifact, shadow/projection artifacts
[1,43,44]. Further investigation is needed to evaluate how these artifacts influence normative
database, as well as its application in diseased eyes. Lastly, some confounders including blood
pressure and intraocular pressure were not corrected. Magnification correction was not applied
because of lacking eye length data. Magnification correction affects the perfusion density
calculation [45], which is linearly correlated with the axial eye length. However, we partially
mitigated this problem by registering the images according to the distance between centers of
ONH and fovea, assuming a small individual variation of this distance [46].

4. Conclusions

In this study, we developed a normative database for 12×12 mm OCTA. We used a U-Net based
deep learning algorithm to accurately segment the large blood vessels; the capillaries were
consequently segmented by a moving window scheme. A total of 195 eyes were included and
divided into 4 age groups: < 30 (N=24), 30-49 years old (N= 28), 50-69 (N=109) and >69
(N=34). Eyes with POAG and NPDR were used to demonstrate the usefulness of the normative
database. Further investigations include evaluating the normative database on diagnosing
pathological eyes in larger datasets.
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